Лабораторные работы по оптоэлектронике Передача информации по оптоволокну

Начертательная геометрия
Примеры выполнения заданий
Практика выполнения технических чертежей
Основные геометрические фигуры
Прямая и точка на плоскости
Построить сечение пирамиды
Чертежи
Замена плоскостей проекций
Виды
Аксонометрические проекции
Дизайн интерьера
Интерьеры дворцов Палладио и Виченце
Художественный театр
Эпоха классицизма в России
Интерьер детского сада в
Марсельском доме

Свет как компонента архитектурного
языка

Архитектура
Градостроительная наука
Разработка интерьера

Ландшафтно-климатические требования

Атриумные здания

Здание школы танцев Парижской оперы

Физика
Электромагнитное взаимодействие
Фотоядерные реакции
Электротехника
Математика
Курсовой расчет
Контрольная работа
Вычислить интеграл
Вычисление площадей фигур
Вычисление объема тела
Лабораторные работы
Теоретическая механика
Зубчатые механизмы
Подвижный шарнир
Сопротивление материалов
Сопротивление усталости
Лабораторная работа
Испытание на сжатие
Испытание материалов на выносливость
Проверка теории изгибающего удара
Электротехника
 

Источники и приемники оптического излучения на основе полупроводников В устройствах оптоинформатики широко используются оптоэлектронные приборы на основе полупроводников. К этим приборам относятся светодиоды и лазеры – как источники света и фотодиоды – как приёмники оптического сигнала. Полупроводники – это вещества, которые по величине электропроводности занимают промежуточное значение между металлами и диэлектриками.

Лабораторные работы

Исследование основных параметров полупроводникового лазера Цель работы: Изучение принципов работы полупроводникового лазера и измерение его основных параметров.

Экспериментальная установка, принципиальная блок-схема которой приведена на рис.5, состоит из узла источника излучения с полупроводниковым лазером (ПЛ), узла приемника излучения, включающего приемник излучения (ПИ), поляризационного светофильтра (ПС) и измерительных приборов (мультиметры – М1 и М2).

Одной из важнейших характеристик лазера являются поляризационные свойства его излучения, которые в полупроводниковых источниках излучения тесно связаны с величиной тока, протекающего через p-n переход. Как известно из литературных данных излучение полупроводниковых источников частично поляризовано, и его можно представить (по крайней мере, формально) как совокупность естественного и линейно поляризованного излучения

Полупроводниковые детекторы оптического излучения в устройствах оптоинформатики Цель работы: Изучение принципов работы и использования приемников оптического излучения на основе полупроводниковых диодов в устройствах оптоинформатики.

Исследование приемника излучения в фотогальваническом режиме работы

Оценка расходимости пучка лазерного излучения Цель работы: Провести оценку расходимости излучения лазера по измерениям профиля лазерного пучка.

Схема установки для измерения распределения интенсивности в поперечном сечении пучка излучения полупроводникового лазера

Сравнение быстродействия p-n и p-i-n диодов, используемых в качестве детекторов излучения Цель работы: Изучение принципов работы и особенностей использования в устройствах оптоинформатики приемников оптического излучения на основе p-n и p-i-n диодов.

Исследование частотных характеристик p-n диода при различных режимах работы

Передача информации Для передачи световой информации широко используются устройства, получившие название световодов. Из этого многообразия устройств выделяются два типа: одножильный световод, называемый оптическим волокном (оптоволокном), представляющий собой тонкую сердцевину (от нескольких микрон до сотен микрон) и окружающую ее оболочку и многожильные световоды, представляющие собой "спеченое" в один жгут множество одножильных световодов - волокон или пучков световодов. Световые жгуты могут содержать десятки тысяч волокон.

Волоконно-оптический световод как среда передачи информации Цель работы: Знакомство с моделью волоконно-оптической системы передачи, основными ее элементами и основными характеристиками волоконно-оптической линии связи на примере многомодового одножильного волокна.

Исследование характеристик светового жгута Цель работы: Знакомство с принципом работы светового жгута и его характеристиками.

В эксперименте в качестве источника излучения (ИИ) используется полупроводниковый лазер с длиной волны излучения 650 нм. Диафрагма (Д) ограничивает сечение лазерного  пучка до размеров входного торца жгута. Торец жгута может поворачиваться вокруг вертикальной оси, что позволяет менять угол падения лучей, входящих в жгут. Интенсивность входящего в жгут и выходящего из него излучения измеряется приемником излучения (ПИ).

Какое количество волокон может содержать световой жгут и как количество волокон влияет на разрешение  переданного по жгуту изображения?

Элементы оптической памяти на основе мультиплексных голограмм Цель работы: Знакомство с характеристиками объемных наложенных голограмм, предназначенных для использования в системах архивной оптической памяти, и условиями их получения.

Увеличение информационной емкости за счет использования постраничной, а не побитовой записи информации и за счет использования наложенной записи, то есть записи на отдельном локальном участке диска нескольких голограмм, каждая из которых может содержать значительный объем информации, например, страницу текста.

Оптическая схема установки для измерения дифракционной эффективности и контура угловой селективности пропускающей голограммы-решетки.

Определить дифракционную эффективность (ДЭ) каждой из наложенных голограмм

Использование преобразования Фурье в системах оптической обработки информации Цель работы: Изучение возможностей преобразования Фурье применительно к оптическим системам.

Рассмотрим вид спектров Фурье для некоторых характерных и часто встречающихся в оптике объектов

Построить графики зависимости интенсивности в фурье-спектрах 

Векторно-матричный умножитель – простейший оптический процессор Цель работы: Познакомиться с возможностями оптических систем, предназначенных для выполнения вычислительных процедур.

Измерить индикатрису излучения каждого из полупроводниковых лазеров (т.е. интенсивность излучения, формируемую каждым из полупроводниковых лазеров линейки 1 и цилиндрическими линзами 2 и 4 в плоскости фотодиодов 5)

Оптический вентиль нечёткой (многозначной) логики Известно, что алгебра, в том числе, и алгебра логики, порождается оператором отрицания. В частности, оператор отрицания, определенный на интервале [0,1] и с областью значений [0,1], порождает нечеткую (многозначную) логику, более адекватную обычной человеческой, чем строгая Булева логика.

Ознакомиться с элементами оптической схемы. Включить лазер и выставить фотодиод, а также  рабочие окна дисков Д1 и Д2 по оси системы, определяемой лучом лазера.

Электроника полупроводников

Основные понятия и уравнения твердотельной электроники

Основные типы p–n-переход. Контакт двух полупроводников с различным типом проводимости носит название p–n-перехода. Создать p–n-переходы можно различными способами. Эти способы позволяют создать самые разнообразные по своей структуре p–n-переходы.

Расчет контактной разности потенциалов. Напомним, что электронно-дырочный переход – это контакт двух полупроводников с различным типом проводимости. Электропроводность полупроводников, обусловленная основными носителями зарядов, определяется следующими выражениями:

Определение напряжения пробоя Uпр. При большом обратном смещении на p–n-переходе, которое создает в нем большое электрическое поле, переход «пробивается» и через него протекает большой ток. Существует три основных механизма пробоя: тепловая неустойчивость, туннельный эффект и лавинное умножение.

Структура "металл-полупроводник"  Расчет вольт-амперной характеристики контакта "металл-полупроводник". Контакт "металл-полупроводник" может быть как омическим, так и выпрямляющим. Омические контакты металла с полупроводником являются обязательными элементами любого активного или пассивного полупроводникового прибора или устройства, так как они осуществляют электрическую связь между элементами прибора и внешней цепью, обусловленную линейной вольт-амперной характеристикой.

Порядок построения энергетических диаграмм контакта "металл-полупроводник". Для построения энергетической диаграммы контакта "металл-полупроводник" при заданном напряжении смещения U необходимо определить следующие электрофизические характеристики

Порядок построения энергетической диаграм-мы МДП-структуры. Для построения энергетической диаграммы МДП-структуры в режиме сильной инверсии необходимо определить следующие электрофизические характеристики: концентрацию примесей в полупроводнике

 Электрофизические свойства различных полупроводниковых структур определяют принципы действия подавляющего большинства интегральных микросхем (ИМС). На границе раздела между двумя различными по типу электропроводности полупроводниками или между полупроводником и металлом возникают потенциальные барьеры, что является следствием перераспределения концентрации подвижных носителей заряда между контактирующими материалами.

Электронно-дырочный переход

Определить во сколько раз увеличивается обратный ток насыщения p-n-перехода

Структура металл-диэлектрик-полупроводник В МДП-транзисторе с поликремниевым затвором рассчитать и построить зависимость порогового напряжения как функции концентрации примесных атомов (ND или NA) в подложке из кремния соответствующего типа проводимости. Диэлектрик – SiO2. Влиянием поверхностных состояний на границе раздела "диэлектрик-полупроводник" пренебречь.

Пример. Германиевый полупроводниковый диод, имеющий обратный ток насыщения I0=25 мкА, работает при прямом напряжении, равном 0,1 В, и T = 300 К. Определить: а) сопротивление диода постоянному току R0; б) дифференциальное сопротивление r.

Пример. Идеальный МДП-конденсатор сформирован на основе кремниевой подложки р-типа с концентрацией NA = 1015 см-3. Диэлектрический слой имеет толщину 100 нм. Разность работ выхода электрона из металла и полупроводника составляет qjМП = - 0,9 эВ. Плотность заряда на границе раздела Qss = 8×10-8 Кл/см-2. Вычислите максимальную толщину обедненной области Wmax , емкость диэлектрического слоя, заряд в обедненной области (Qs), пороговое напряжение и минимальную емкость МДП-конденсатора, а также его пороговое напряжение с учетом влияния напряжения плоских зон.

Квантовая физика возникла и в основном сформировалась в первой трети ХХ столетия. Возникновение и развитие квантовой физики связано с именами М. Планка, А. Эйнштейна, Л.де Бройля, Н. Бора, В. Гейзенберга, Э. Шредингера, В. Паули. Значительный вклад внесли советские физики Л.Д. Ландау, В.А. Фок, А.Ф. Иоффе и др.

Описание установки и методика измерений Экспериментальная установка состоит из обычной лампочки накаливания с вольфрамовой нитью, светофильтра и приемника излучения (фоторезистора)

Дистанционное измерение температуры нагретых светящихся тел яркостным пирометром

Методика измерения температуры вольфрама яркостным пирометром Эксперименты с излучением нечерных тел (вольфрам и другие металлы, применяемые в качестве нитей накаливания в осветительных приборах) показывают на то, что излучение нечерных тел может иметь селективный характер.

Изучение законов внешнего фотоэффекта; исследование вольт-амперных характеристик вакуумного фотоэлемента; определение постоянной Планка.

Методика снятия ВАХ фотоэлемента Для снятия вольт-амперных характеристик ФЭ при различных величинах светового потока на ФЭ подают напряжение постоянного тока и измеряют протекающий через него ток. При приложении положительного напряжения («прямого напряжения») на анод ФЭ снимается прямая ветвь ВАХ, а при подаче отрицательного напряжения («обратного напряжения») снимается обратная ветвь.

Наблюдение спектров испускания и измерение длин волн в спектрах ртути и водорода, ознакомление с устройством и работой спектрометра-монохроматора.

Таким образом, решения уравнения Шредингера приводят к условиям квантования Бора. Однако квантовая механика дает схему атомных энергетических уровней с такой общностью и точностью, которые совершенно недосягаемы для теории Бора.

Изучение зависимости сопротивления металлов и полупроводников от температуры; определение длины свободного пробега электронов в металле и ширины запрещенной зоны полупроводника.

Измерить фон вторичного космического излучения, ознакомиться с методами регистрации ионизирующего излучения.

Изучение волновых свойств и особенностей движения микрочастиц

ЦИФРОВЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

Анализ и синтез цифровых схем проводят на основе Булевой алгебры

Типы логических микросхем и структура ТТЛ

Мультиплексоры и демультиплексоры Мультиплексор (MX) (другие названия – селектор данных, коммутатор) – это комбинационное логическое устройство, предназначенное для управляемой передачи данных, которые поступают по нескольким входам, на один выход. Выбор того или иного входа осуществляется в соответствии с поступающим кодом адреса.

ЭЛЕМЕНТЫ ОПТОЭЛЕКТРОНИКИ

Оптоэлектроника – это раздел электроники, в котором изучаются вопросы генерации, передачи и хранения информации на основе совместного использования оптических и электрических явлений. Элементная база:

1. Фотоэлектрические полупроводниковые приборы – преобразователи световой энергии в электрическую.

2. Светодиодные оптоизлучатели– преобразователи электрической энергии в световую.

3. Оптоэлектрические пары (оптопары, оптроны) – приборы для электрической изоляции при передаче информации по световому каналу.

Лабораторная работа. Исследование полупроводниковых диодов Цель работы Снятие вольтамперных характеристик германиевого и кремниевого диода, стабилитрона, определение их параметров по характеристикам.

Расчет схемы управления тиристорными ключами Правильный выбор схемы управления и ее точный расчет в большой степени определяют долговечность и надежность тиристорного регулятора.

Принцип действия и конструкция фоторезистора

ФОТОГАЛЬВАНИЧЕСКИЙ ЭФФЕКТ Эффект Дембера. Механизм образования фото – э.д.с. в полупроводниках с электронно-дырочным переходом.

ИНТЕГРАЛЬНАЯ И ВОЛОКОННАЯ ОПТИКА Процессы в оптическом волноводе

Фотопроводимость

Принципы работы оптических модуляторов и дефлекторов

Схемы оптронов и их элементы. Параметры, характеризующие работу оптронов. Резисторные, диодные, транзисторные и тиристорные оптопары. Оптоэлектронные микросхемы. Оптронами называются такие оптоэлектронные приборы, в которых имеются излучатели и фотоприемники, оптически и конструктивно связанные друг с другом.

Фотодиоды с барьером Шоттки, лавинные фотодиоды